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Abstract. Based on the generic two-gluon-exchange dynamical mechanism for deeply inelastic scattering
at low x � Q2/W 2 � 1, we stress the intimate direct connection between the total virtual photoabsorption
cross section, deeply virtual Compton scattering and vector-meson electroproduction. A simple expression
for the cross section for deeply virtual Compton scattering is derived. Parameter-free predictions are
obtained for deeply virtual Compton forward scattering and vector-meson forward production, once the
parameters in the total virtual photoabsorption cross section are determined in a fit to the experimental
data on deeply inelastic scattering. Our predictions are compared with the experimental data from HERA.

1 Introduction

We have recently stressed and worked out [1,2] the inti-
mate connection between deeply inelastic scattering (DIS)
at x � Q2/W 2 � 1, i.e. between the virtual photoabsorp-
tion cross section including Q2 = 0 photoproduction, and
“elastic” diffractive production,

γ∗p → (qq̄)J=1p. (1.1)

In (1.1), (qq̄)J=1 may refer to one of the discrete vector
mesons, ρ0, ω, φ, J/ψ, Υ , or else, to the diffractively pro-
duced mass continuum under the restriction to spin J = 1.
Deeply virtual Compton scattering, γ∗p → γp, is to be in-
cluded in (1.1) by attaching a real photon to the final
(qq̄)J=1 state, via

γ∗p →
[∫

(qq̄)J=1 → γ

]
p, (1.2)

where the integration runs over the mass of the interme-
diate (qq̄)J=1 state.

The treatment in [1,2] was relying on a single assump-
tion: it is the generic two-gluon-exchange structure [3,
4] depicted in Figs. 1 and 2, that is the basic dynami-
cal mechanism underlying the total photoabsorption cross
section and diffractive production at low x.

In the present work we will employ the connection be-
tween the total photoabsorption cross section and diffrac-
tive production to obtain parameter-free predictions for
deeply virtual Compton scattering, γ∗p → γp (DVCS),

� Supported by Deutsche Forschungsgemeinschaft, contract
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Fig. 1. The forward Compton amplitude

including real Compton scattering, γp → γp, and for
forward vector-meson electroproduction, including vector-
meson photoproduction. Both, DVCS and vector-meson
production, will be compared with the experimental data
from HERA.

Section 2 summarizes the salient features of our ap-
proach to the total virtual photoabsorption cross section
and diffractive production.

In Sect. 3, on the basis of Sect. 2, we will give a sim-
ple derivation of an extraordinarily simple expression for
DVCS that will be shown to agree with the data [5] from
HERA with respect to the W and the Q2 dependence.

In Sect. 4, we turn to vector-meson production and
compare with the experimental data [6] with respect to
the W and the Q2 dependence and the longitudinal-to-
transverse ratio.

We end with brief conclusions in Sect. 5.

Fig. 2. One of the 16 diagrams for diffractive production. The
vertical line indicates the unitarity cut corresponding to the
diffractively produced final states, (qq̄)J . Production of (dis-
crete or continuum) vector states corresponds to (qq̄)J pro-
duction with J = 1
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2 The total virtual
photoabsorption cross section

The intimate connection between the total photoabsorp-
tion cross section and “elastic” diffraction is explicitly rep-
resented by the recently derived sum rules [1,2]

σγ∗
Tp

(W 2, Q2) =
√

16π
√
αRe+e−

3π

·
∫
m2

0

dM2 M

Q2 +M2

√
dσγ∗

Tp→(qq̄)J=1
T p

dtdM2

∣∣∣∣
t=0

(2.1)

and

σγ∗
Lp

(W 2, Q2) =
√

16π
√
αRe+e−

3π

·
∫
m2

0

dM2

√
Q2

Q2 +M2

√
dσγ∗

Lp→(qq̄)J=1
L p

dtdM2

∣∣∣∣
t=0

. (2.2)

that relate the transverse and the longitudinal part of the
total cross section to the transverse and the longitudi-
nal part, respectively, of the forward-production ampli-
tude of (qq̄)J=1 (vector) states. The representations (2.1)
and (2.2) follow from the assumption that the two-gluon-
exchange dynamical mechanism of Figs. 1 and 2 be valid
in the x → 0 limit. The imaginary part of the (qq̄)J=1-
forward-production amplitude in (2.1) and (2.2) appears
as the square root of the forward-production cross sec-
tion1,2. We have

dσγ∗
T,Lp→(qq̄)J=1

T,L p

dtdM2

∣∣∣∣∣
t=0

=
dσγ∗

T,Lp→(qq̄)J=1
T,L p

dtdM2

∣∣∣∣∣
t=0

(W 2, Q2,M2). (2.3)

As indicated in (2.3), the forward-production cross sec-
tion depends on the total γ∗p center-of-mass energy, W ,
and the photon four-momentum squared, q2 = −Q2, as
well as the mass M ≡ Mqq̄ of the (qq̄) vector state be-
ing produced and integrated over in (2.1) and (2.2). The
lower limit, m2

0, in (2.1) and (2.2), with m0 being smaller
than the ρ0-meson mass, m2

0 < m2
ρ0 , enters via quark–

hadron duality [7–9]; the vector mesons, ρ0, ω, φ, J/ψ and
Υ are treated as part of the diffractive continuum rather

1 Strictly speaking, forward production of (massive) (qq̄) vec-
tor states involves a finite momentum transfer, |tmin|, and the
sum rules (2.1) and (2.2) require an extrapolation to t = 0.
We will employ the approximation of |tmin| � 0 for diffractive
forward production, since |tmin| becomes exceedingly small for
x → 0. Compare the explicit formula for |tmin| in Sect. 4

2 In (2.1) and (2.2), we have suppressed factors 1/
√

(1 + β2
T)

and 1/
√

(1 + β2
L), respectively, where βT,L stands for the ratio

of the real-to-imaginary part of the forward-scattering ampli-
tude. The ratio βT,L is expected to be small, βT,L � 1, as
in truly elastic hadron–hadron scattering, and β2

T,L may fre-
quently be ignored.

than being added as separate resonances. Indeed, pho-
toabsorption for spacelike photons should be insensitive
to fine details of the photon coupling to qq̄ pairs in the
timelike region and a global description in which a contin-
uous spectral weight function interpolates [8] the low-lying
vector-meson resonances is expected to be successful. The
sum of the squares of the active quark charges (in units of
e) in (2.1) and (2.2) is expressed by

Re+e− = 3
∑
q

Q2
q, (2.4)

where Re+e− denotes the cross section for e+e− annihila-
tion, Re+e− → (qq̄)J=1 → hadrons, in units of the cross
section for e+e− → µ+µ−.

The sum rules (2.1) and (2.2) were derived [1,2] by
comparing with each other the explicit expressions for the
total cross section and the cross section for diffractive pro-
duction based on the two-gluon-exchange interaction de-
picted in Figs. 1 and 2 in the limit of x � Q2/W 2 � 1.
In the frequently employed transverse-position-space rep-
resentation [10,4] the total cross section and the cross sec-
tion for diffractive production of (qq̄)J=1 (vector) states
are then given by [2,1]

σγ∗
T,Lp

(W 2, Q2)

=
∫

dz
∫

d2r⊥|ψT,L(r⊥, z(1 − z), Q2)|2

·σ(qq̄)J=1
T,L p

(r⊥
√
z(1 − z),W 2) (2.5)

and

dσγ∗
T,Lp→(qq̄)J=1

T,L p

dt

∣∣∣∣∣
t=0

=
1

16π

∫
dz
∫

d2r⊥
∣∣ψT,L(r⊥, z(1 − z), Q2)

∣∣2
·σ2

(qq̄)J=1
T,L p

(r⊥
√
z(1 − z),W 2), (2.6)

where

σ(qq̄)J=1
T,L

(r⊥
√
z(1 − z),W 2)

=
∫

d2l′⊥σ̄(qq̄)J=1
T,L p

(l ′2
⊥ ,W 2)

· (1 − e−il ′
⊥·r⊥

√
z(1−z)). (2.7)

In (2.5), the restriction that the photon exclusively cou-
ples to spin J = 1 quark–antiquark pairs, (qq̄)J=1, is ex-
plicitly incorporated. The dependence of the color-dipole
cross section, σ(qq̄)J=1

T,L
(r⊥
√
z(1 − z),W 2) on r⊥

√
z(1 − z)

assures the restriction to the scattering of J = 1 color
dipoles on the proton. As usual, in (2.5) and (2.6) the
(light-cone) wave function of the virtual photon is denoted
by ψT,L(r⊥, z(1 − z), Q2), where∣∣ψT(r⊥, z(1 − z), Q2)

∣∣2
=

6α
(2π)2

∑
q

Q2
q

[(
z2 + (1 − z)2

)
ε2K1(εr⊥)2



M. Kuroda, D. Schildknecht: Virtual photoabsorption cross section, Compton scattering, vector-meson production 207

+ m2
qK0(εr⊥)2

]
, (2.8)∣∣ψL(r⊥, z(1 − z), Q2)

∣∣2
=

6α
(2π)2

∑
q

Q2
q

[
4Q2z2(1 − z)2K0(εr⊥)2

]
, (2.9)

ε2 = z(1 − z)Q2 +m2
q. (2.10)

In standard notation, Qq and mq denote the quark charge
and mass, respectively, and z is the fraction of the light-
cone momentum carried by the quark from the qq̄ pair,
i.e. k+ = zq+ = z(q0 + q3). Finally, K1 and K0 denote
modified Bessel functions.

Upon inserting (2.7) into (2.5) and (2.6) and introduc-
ing the mass of the (qq̄)J=1 state, M ≡ M(qq̄)J=1 , and
upon reducing the number of integrations, one reads off
the validity of the sum rules (2.1) and (2.2)3.

The representations (2.5) to (2.7) differ from the fre-
quently employed ones [4]

σγ∗
T,Lp

(W 2, Q2)

=
∫

dz
∫

d2r⊥
∣∣ψT,L(r⊥, z(1 − z), Q2)

∣∣2
·σ(qq̄)p(r⊥,W 2), (2.11)

and

dσγ∗
T,Lp→Xp(W 2, Q2)

dt

∣∣∣∣∣
t=0

=
1

16π

∫
dz
∫

d2r⊥
∣∣ψT,L(r⊥, z(1 − z), Q2)

∣∣2
·σ2

(qq̄)p(r⊥,W 2), (2.12)

with4

σ(qq̄)p(r⊥,W 2) =
∫

d2l⊥σ̃(qq̄)p
(
l 2
⊥ ,W

2) (1 − e−il⊥·r⊥
)

(2.13)
by the substitutions5

r⊥ → r ′
⊥ = r⊥

√
z(1 − z),

l⊥ → l ′
⊥ =

l⊥√
z(1 − z)

, (2.14)

and

z(1 − z)σ̃(qq̄)p(l ′2
⊥ z(1 − z),W 2) → σ̄(qq̄)J=1

T,L p
(l ′2

⊥ ,W 2).
(2.15)

3 The approximation of massless quarks was employed
throughout.

4 Note that �4⊥σ̃(qq̄)p(�2⊥,W
2) in (2.13) is proportional to the

gluon density theoretically examined in BFKL approach [11],
and phenomenologically investigated in [12]. In the present in-
vestigation we are only concerned with the spin J = 1 projec-
tion of σ̃(qq̄)p(�2⊥,W

2) and, consistent with the mass dispersion
relation of GVD, we adoptW 2 as the basic variable rather than
x ∼ Q2/W 2.

5 The momentum �′⊥ = �⊥/
√
z(1 − z) is the momentum

of the gluon that is absorbed by the quark of momentum
k⊥/

√
z(1 − z). when transversing the nucleon.

The replacement defined by (2.14) and (2.15) is a conse-
quence of applying a partial-wave decomposition of the
qq̄ states in (2.11) to (2.13). The partial-wave decom-
position explicitly eliminates all contributions of (qq̄)J �=1

states that are irrelevant in (2.11), since they are projected
to zero by the square of the photon wave function. The
elimination of these redundant components of the dipole
cross section is of particular importance, if the experimen-
tal data on σγ∗p(W 2, Q2) are used to extract the dipole
cross section by employing a fitting procedure.

A fit based on (2.5) yields a unique prediction, ac-
cording to (2.6), for the (whole) diffractive production
of (qq̄)J=1

T,L states. A fit based on (2.11), however, does
not yield a prediction for diffractive production according
to (2.12). The contributions from diffractively produced
states (qq̄)J �=1, necessarily included in (2.12), remain un-
constrained in a fit based on (2.11). The fact that various
different dipole cross sections [13] lead to equally good rep-
resentations of σγ∗p(W 2, Q2) is presumably a consequence
of the presence of such J �= 1 contributions that remained
undetermined in the fits to σγ∗p(W 2, Q2). The represen-
tation (2.11) by itself is highly non-unique with respect
to the color-dipole cross section. The alternative of a si-
multaneous fit of (2.11) and (2.12) would have to cope
with the much larger experimental uncertainty of the ex-
perimental data on diffractive production in comparison
with the ones on σγ∗p(W 2, Q2). It is preferable, accord-
ingly, with respect to fits of experimental data to use the
representation (2.5) with (2.7), and turn to a description
of the total diffractive production that includes (qq̄)J �=1

states subsequently.
Coming back to the sum rules (2.1) and (2.2) for a

moment, we note that they can be written down directly,
without referring to the two-gluon-exchange dynamics,
provided one is willing to adopt the validity of generalized
vector dominance (GVD [14,8]), and (2.1) was indeed first
given from GVD [15]. In terms of GVD, the factor

√
αRe+e−

3π
1
M2

M2

Q2 +M2 (2.16)

in (2.1) originates from the coupling of the photon to the
(qq̄)J=1 intermediate state in Fig. 2 and its propagation
(always assuming x → 0), once a virtual photon, γ∗

T, is
attached to it, in order to reproduce the corresponding
diagram of Fig. 1. In the case of the longitudinal photon,
γ∗
L, in (2.2), an additional factor

√
Q2/M2 must be in-

cluded in GVD [16,14] as a consequence of the coupling
of the photon to a conserved source.

An additional general comment may be appropriate at
this point concerning the emergence of GVD as a conse-
quence of the two-gluon-exchange dynamical mechanism
of Fig. 1 in the x → 0 limit. The essential point is the
observation, by no means new [17,4,18], that the denom-
inators of the quark propagators in Fig. 1 in the x → 0
limit in the photoabsorption cross section lead to factors
of the form

1
Q2 +M2 , (2.17)
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with

M2 = M2
qq̄ =

k2
⊥ +m2

q

z(1 − z)
. (2.18)

In (2.17), one recognizes the denominator of a vector-
meson propagator for a vector-meson (qq̄) state of mass
M . Note that the propagator mass Mqq̄ in (2.18) is related
to the spacelike four-momentum squared q2 of the photon
the qq̄ pair is coupled to,

q2 =
k2
q + k2

⊥
z

+
k2
q̄ + k2

⊥
1 − z

= −Q2 < 0, (2.19)

by substitution of the on-shell values

k2
q = k2

q̄ = m2
q, (2.20)

for both the quark and the antiquark four-momentum.
The qq̄ mass in the propagator, i.e. the mass of the qq̄
state the photon dissociates or “fluctuates” into, is ac-
cordingly identical to the mass of a qq̄ state (with on-shell
quarks) diffractively produced via two-gluon exchange. In
short, the quark propagator becomes transmogrified into
a vector-meson propagator containing the invariant mass
(2.18) of a system of an on-shell quark and an on-shell
antiquark, i.e. we have the GDV structure.

So far, no specific realization of the lower vertex in
Figs. 1 and 2 was adopted. Examining the dipole cross
section (2.7) in the limit of large and small interquark
separation, r′

⊥ → ∞ and r′
⊥ → 0, allows one to strongly

reduce arbitrariness. From (2.7)6,

σ(qq̄)J=1p(r
′
⊥,W

2) = σ(∞)(W 2)

·
{

1, for r′
⊥ → ∞,

1
4r

′2
⊥〈l ′2

⊥ 〉W 2 , for r′2
⊥〈l′2⊥〉W 2 → 0,

(2.21)

where

σ(∞)(W 2) = π
∫

dl ′2
⊥ σ̄(qq̄)J=1(l ′2

⊥ ,W 2), (2.22)

and

〈l ′2
⊥ 〉W 2 =

∫
dl′2⊥l ′2

⊥ σ̄(qq̄)J=1(l ′2
⊥ ,W 2)∫

dl′2⊥σ̄(qq̄)J=1(l ′2
⊥ ,W 2)

≡ Λ2(W 2), (2.23)

we find that the J = 1 color-dipole cross section is strongly
constrained, once the integral (2.22) over the gluon-
momentum dependence and its first moment, (2.23), the
“saturation scale”, Λ2(W 2), are specified. Even though
given values of the energy-dependent quantities σ(∞)(W 2)
and 〈l ′2

⊥ 〉W 2 ≡ Λ2(W 2) do by no means uniquely specify

6 It is to be stressed that “saturation” for r′
⊥ → ∞ and

“color transparency” for r′
⊥ → 0 in (2.21) are a consequence

of the QCD-gauge-theory structure that is contained in (2.7).
Compare [4]. Also, we drop the indices T,L, anticipating the
ansatz (2.24) that does not contain a dependence on whether
the (qq̄)J=1 state is transversely or longitudinally polarized.

the color-dipole cross section, different functional forms of
σ(qq̄)J=1p(r′

⊥,W
2) restricted by identical integrated distri-

butions (2.22) and (2.23) are nevertheless largely equiva-
lent. According to (2.21) they lead to identical color-dipole
cross sections in both the limit of large and the limit of
small interquark separation.

The ansatz for the J = 1 color-dipole cross section
chosen previously (generalized vector dominance-color-
dipole picture, GVD-CDP) [19] is parametrized in terms
of σ(∞)(W 2) and Λ2(W 2),

σ̄(qq̄)J=1
T

(l ′2
⊥ ,W 2)

= σ̄(qq̄)J=1
L

(l ′2
⊥ ,W 2)

= σ(∞)(W 2) · 1
π

δ(l ′2
⊥ − Λ2(W 2)), (2.24)

and it can indeed be adopted without significant loss
of generality. In other words, the ansatz (2.24) that
parametrizes the J = 1 color-dipole cross section in terms
of the two W -dependent parameters (2.22) and (2.23) is
a fairly stringent consequence from the underlying two-
gluon-exchange mechanism. The specific choice of the δ-
function in (2.24) is a purely technical simplification.

With respect to transverse position space, according
to (2.7) and (2.24) becomes

σ(qq̄)J=1p(r
′2

⊥ ,W 2) = σ(∞)(W 2)(1 − J0(r′
⊥Λ(W 2))),

(2.25)
where J0(r′

⊥Λ(W 2)) denotes a Bessel function.
A general conclusion on the energy dependence of the

total cross section follows immediately upon substitut-
ing (2.21) into (2.7) and subsequently (2.7) into the ex-
pression for the total cross section (2.5). Provided we ex-
clude the (artificial) assumption that the first moment of
the transverse-momentum distribution (2.23) be indepen-
dent of W , i.e. provided we exclude the assumption of
Λ2(W 2) = const., the increasing importance in (2.5) of
the short-distance limit (2.21) with increasing Q2 will im-
ply an increasingly stronger dependence of σγ∗p(W 2, Q2)
on W . This is indeed, what is observed experimentally
[20].

A theoretical argument against Λ2(W 2) = constant
may also be based on requiring duality between the two-
gluon-exchange dynamics and Regge (or more specifically
pomeron) behavior in the Q2 = 0 photoproduction limit.
Requiring the energy dependence in photoproduction from
(2.5) and (2.25) to coincide with the one due to pomeron
exchange,

σpomeron
γp (W 2)

≡ σ(∞)(W 2)
∫

dz
∫

d2r⊥
∣∣ψT(r⊥, z(1 − z), Q2 = 0)

∣∣2
·
(
1 − J0

(
r⊥
√
z(1 − z)Λ(W 2)

))
, (2.26)

and to be a genuine consequence of the generic two-gluon-
exchange structure7, a factorized W dependence, unre-

7 The smooth transition to photoproduction may also be
used as an argument for the dipole cross section in (2.21) to
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lated to the structure of the two-gluon-exchange dynam-
ics that is contained in the integral in (2.26), is theoreti-
cally disfavored. In other words, the option Λ = constant
that imposes soft-pomeron behavior by an overall factor
in (2.26) may safely be dismissed on theoretical grounds.

The theoretical argument is supported by a fit [19] to
the experimental data [20] that uses the parameterization
of σγp(W 2) by pomeron exchange as an input at Q2 = 0,
thus replacing σ(∞)(W 2) by σpomeron

γp according to (2.26).
The fit to the experimental data indeed gave an increase
of Λ2(W 2) with W 2, while σ(∞) turned out to be energy
independent in good approximation.

In momentum space, the ansatz (2.24), (2.25) for the
total cross section (2.5) implies [1]

σγ∗
Tp

(W 2, Q2) =
αRe+e−

3π
σ(∞)

∫
m2

0

dM2 1
Q2 +M2

·
[

M2

Q2 +M2

− 1
2

(
1 +

M2 − Λ2(W 2) −Q2√
(Q2 +M2 − Λ2(W 2))2 + 4Q2Λ2(W 2)

)]

(2.27)

and

σγ∗
Lp

(W 2, Q2) =
αRe+e−

3π
σ(∞)

∫
m2

0

dM2 1
Q2 +M2

·
[

Q2

Q2 +M2

− Q2√
(Q2 +M2 − Λ2(W 2)) + 4Q2Λ2(W 2))

]
.

(2.28)

The result of the integration of (2.27) and (2.28) was given
before [1]. Here, in connection with the procedure used in
Sects. 3 and 4, it is useful to note that the Q2 → 0 and
the Q2 
 Λ2(W 2) limit of σγ∗

T,Lp
(W 2, Q2) can immedi-

ately be derived by taking the corresponding limits under
the integrals in (2.27) and (2.28). For Q2 � Λ2(W 2), or,
equivalently, η � 1, one finds

σγ∗p(W 2, Q2) =
α

3π
Re+e−σ(∞) ln

1
η
, (2.29)

while for Q2 
 Λ2(W 2), or η 
 1,

σγ∗
Tp

(W 2, Q2) = 2σγ∗
Lp

(W 2, Q2)

=
α

3π
Re+e−σ(∞) 1

3η
, (2.30)

with the scaling variable [21]

η(W 2, Q2) =
Q2 +m2

0

Λ2(W 2)
. (2.31)

(2.23) to depend on the single variable W 2 = x/Q2 rather
than on x, or on both x and Q2 independently. Note that in
addition to the propagator factor (2.17), it is the dependence
of the dipole cross section on the single variable W that fully
guarantees the GVD structure.

The fit to the experimental data with the ansatz (2.24)
gave [22]8

Λ2(W 2) =


 B

(
W 2

W 2
0

+ 1
)C2

,

C ′
1 ln

(
W 2

W ′2
0

+ C ′
2

)
,

m2
0 = 0.15 ± 0.04 GeV2, (2.32)

where

B = 2.24 ± 0.43 GeV2,

W 2
0 = 1081 ± 124 GeV2,

C2 = 0.27 ± 0.01. (2.33)

We emphasize the emergence of a “soft” energy de-
pendence in (2.29) and a “hard” one in (2.30) as a strict
consequence of the generic two-gluon-exchange dynamics
together with the natural assumption that the effective
gluon transverse momentum (2.23) is to increase with en-
ergy W .

Note that the normalization of the cross sections (2.27)
to (2.30) is determined by the product Re+e−σ(∞). With
Re+e− = 2 for three active flavors, relevant for photopro-
duction, the experimental data require [19]

σ(∞) = 30 mb � 77.04 GeV−2. (2.34)

With respect to the treatment of vector-meson produc-
tion in Sect. 3, we also note the cross section for diffractive
production. With the ansatz (2.21) and (2.6), one obtains
[1]

dσγ∗
Tp→(qq̄)J=1

T

dtdM2dz

∣∣∣∣
t=0

=
α ·Re+e−

3 · 16π2 (σ(∞))2
3
2
(
z2 + (1 − z)2

) 1
M2

·
[

M2

Q2 +M2 − 1
2

(1

+
M2 − Λ2(W 2) −Q2√

(Q2 +M2 − Λ2(W 2))2 + 4Q2Λ2(W 2)

)]2

,

(2.35)

and

dσγ∗
Lp→(qq̄)J=1

L

dtdM2dz

∣∣∣∣
t=0

=
α ·Re+e−

3 · 16π2 (σ(∞))2 · 6Q2z(1 − z)

8 We note that the energy scale W0 may be eliminated in
favor of Q2 ≡ Q2

0 = 1 GeV2 and the value of x correspond-
ing to W 2

0 and Q2
0, i.e. x0 ≡ Q2

0/W
2
0 . We have in very good

approximation

Λ2(W 2) ∼= BxC2
0

(
W 2

1 GeV2

)C2

= 0.340
(

W 2

1 GeV2

)0.27

GeV2.
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·
[

1
Q2 +M2

− 1√
(Q2 +M2 − Λ2(W 2))2 + 4Q2Λ2(W 2)

]2

,

(2.36)

and, finally, for the sum of (2.35) and (2.36),

dσγ∗p→(qq̄)J=1p

dtdM2

∣∣∣∣
t=0

=
αRe+e−

3 · 32π2 (σ(∞))2
1
M2

·
[
1− (M2 +Q2)2 − (M2 −Q2)Λ2(W 2)

(M2 +Q2)
√

(Q2 +M2 − Λ2(W 2))2 + 4Q2Λ2(W 2)

]
.

(2.37)

Comparing (2.35) and (2.36) with (2.27) and (2.28) once
again takes us back to the sum rules (2.1) and (2.2), now
based on the specification (2.21) of the J = 1 color-dipole
cross section.

From (2.29), for any fixed Q2, for W → ∞, we have
“saturation” in the sense of reaching the photoproduction
limit [21,22],

lim
W2→∞
Q2=const

σγ∗p(W 2, Q2)
σγp(W 2)

= 1. (2.38)

We add a brief comment on the relation of our
approach to the one in [12,23]. In [12,23], the �⊥-
factorization representation (2.11) and (2.12) is imple-
mented by relating the unintegrated gluon distribution
at sufficiently large Q2 to the empirically determined in-
tegrated gluon distribution, and by applying a suitable
extrapolation to reach the limit of Q2 towards zero. Our
approach starts by carrying out the J = 1 projection im-
plicitly contained in (2.11) and (2.12), and it specifies the
J = 1 part of the color-dipole cross section, compare (2.21)
to (2.25), in a manner consistent with the scaling law [21,
22], σγ∗p = σγ∗p(η). The underlying gluon distribution
in our approach may be constructed by taking the loga-
rithmic derivative of the structure function, F2 ≈ Q2σγ∗p,
following [24].

It has been the aim of this Sect. 2 to prepare
the ground for the discussions on DVCS and on “elas-
tic” diffraction, in particular vector-meson production, in
Sects. 3 and 4. The exposition of Sect. 2 was meant to
show that hardly any additional assumption need to be
introduced to reach a quantitative9 description of the ex-
perimental data on σγ∗p(W 2, Q2), once the x → 0 limit of
the generic two-gluon-exchange mechanism is adopted.

3 Deeply virtual Compton scattering

With the results from Sect. 2, it is a simple matter to
deduce the forward-scattering amplitude and the forward-

9 Note that Λ2(W 2) is related [21,2] to the gluon-structure
function. As in case of the gluon-structure function, that de-
pends on a more or less arbitrary input distribution, the
free parameters in Λ2(W 2) cannot be theoretically derived at
present.

scattering cross section for DVCS. The reaction γ∗p → γp
is described by the diagrams in Fig. 1 upon putting the
final photon, γ, on-shell, Q2 = 0.

Technically, three different, but equivalent, ways sug-
gest themselves to derive the (dominant) imaginary part
of the DVCS amplitude.

(i) Evaluate the representation (2.5) for the transverse
part10 of the total virtual photoabsorption cross sec-
tion upon substituting Q2 = 0 in one of the photon
wave functions, ψT(r⊥, z(1 − z), Q2 = 0), in (2.5)11.

(ii) Use the sum rule (2.1) and its GVD interpretation
that associates the factor explicitly shown in (2.16)
with the propagator of the (qq̄)J=1 state of mass
Mqq̄ ≡ M and four-momentum squared q2 = −Q2.
Simply put Q2 = 0 in this propagator factor in (2.1),
and evaluate the integral over M2.

(iii) Use the symmetry between the incoming and
the outgoing photon in the sum rule (2.1) for
σγ∗

T
(W 2, Q2), and accordingly put Q2 = 0 in the

diffractive forward-scattering amplitude appearing
in (2.1) via the square root of the forward-scattering
cross section (2.3).

Employing method (iii)12, we note that the diffractive
cross section (2.35) in the Q2 = 0 limit reduces to13

dσγ∗
Tp→(qq̄)J=1

T p

dtdM2

∣∣∣∣
t=0

(W 2, Q2 = 0,M2)

=
1

16π
αRe+e−

3π
(σ(∞))2

{
1
M2 , for M2 < Λ2(W 2),
0, for M2 ≥ Λ2(W 2).

(3.1)

Rewriting (2.1) as a sum rule for the imaginary part
of the forward-scattering amplitude for γ∗p → γ∗p, we
substitute (3.1), and upon squaring the result, we find

dσγ∗p→γp

dt

∣∣∣∣
t=0

(W 2, Q2)

=
1

16π

(
αRe+e−σ(∞)

3π

)2(∫ Λ2(W 2)

m2
0

dM2

Q2+M2

)2

(1+β2
T),

(3.2)

or

10 Helicity conservation is assumed.
11 This approach approximates the imaginary part of the
forward-scattering amplitude, i.e. the color-dipole cross sec-
tion at tmin �= 0 by its value at t = 0, which value is identical
to the one that enters the total virtual photoabsorption cross
section. The approximation is well justified by the exceedingly
small value of |tmin|. Compare (3.16) below.
12 For completeness, we also verified our result by using the
technically somewhat more involved methods (i) and (ii)
13 The (discontinuous) sudden vanishing of the cross section
(3.1) for M2 ≥ Λ2(W 2) is an artefact of the δ-function ansatz
(2.24).



M. Kuroda, D. Schildknecht: Virtual photoabsorption cross section, Compton scattering, vector-meson production 211

dσγ∗p→γp

dt

∣∣∣∣
t=0

(W 2, Q2)

=
1

16π

(
αRe+e−σ(∞)

3π

)2(
ln
Q2 + Λ2(W 2)
Q2 +m2

0

)2

(1 + β2
T).

(3.3)

The factor 1 + β2
T in (3.2) and (3.3) takes care of the real

part of the forward-scattering amplitude. The correction
βT for the real part will not be discussed in detail, since
it is expected to be fairly negligible, β2

T � 114, at least
with respect to the accuracy of the presently available
experimental data. A brief comment concerns the lower
limit, m2

0, in (3.2). As mentioned in connection with the
results for the total cross section and for diffraction, a
(correct) symmetric introduction of the threshold mass
m0 with respect to the incoming and outgoing photon
leads to a correction term [19]. We have checked that this
correction only insignificantly, at the 1% level, affects the
very simple final result (3.3) for DVCS in the forward
direction.

In the low-Q2 limit ofQ2 � Λ2(W 2), we may represent
(3.3) in terms of the scaling variable from (2.31),

η−1(W 2, Q2) =
Λ2(W 2)
Q2 +m2

0
, (3.4)

to become

dσγ∗p→γp

dt

∣∣∣∣
t=0

(W 2, Q2)

=
1

16π

(
αRe+e−σ(∞)

3π

)2

· (ln η−1)2(1 + β2
T), (3.5)

or, upon introducing the total virtual photoabsorption
cross section from (2.29) on the right-hand side in (3.5),

dσγ∗p→γp

dt

∣∣∣∣
t=0

(W 2, Q2) =
1

16π
σ2
γ∗p(η)(1 + β2

T) (η � 1),

(3.6)
Even though Q2 = 0 for the outgoing photon in DVCS, for
Λ2(W 2) 
 Q2, according to (3.6), we nevertheless have
approximate validity of the optical theorem; the imaginary
part of the forward-scattering amplitude for γ∗p → γp is
in good approximation given by the imaginary part of the
amplitude for γ∗p → γ∗p. In the limit of real Compton
scattering (3.6) becomes identical to the optical theorem
for (real) Compton scattering,

dσγp→γp

dt

∣∣∣∣
t=0

(W 2) =
1

16π
σ2
γp(W

2)(1 + β2
T). (3.7)

The transition from real Compton scattering to DVCS for
η � 1, according to (3.7) and (3.6), corresponds to the
substitution

ln
Λ2(W 2)
m2

0
→ ln

Λ2(W 2)
Q2 +m2

0
. (3.8)

14 A recent estimate [25] in a color-dipole approach finds a
value that decreases from about β2

T ∼< 0.2 for W ∼= 30 GeV to
β2

T ∼< 0.1 at W ∼= 300 GeV.

Turning to the opposite limit of Q2 
 Λ2(W 2), by
expanding the logarithmic function in (3.3), we find

dσγ∗p→γp

dt

∣∣∣∣
t=0

(W 2, Q2)

=
1

16π

(
αRe+e−σ(∞)

3π

)2
Λ4(W 2)
Q4 (1 + β2

T)

=
1

16π

(
αRe+e−σ(∞)

3π

)2
1
η2 (1 + β2

T). (3.9)

The approach to this limit (3.9) of a 1/Q4 dependence is
slow, i.e. in the HERA energy range of 30 GeV∼< W ∼<
300 GeV, the behavior of (3.3) is closer to 1/Q3 (as found
in the ZEUS experiment [5]) than to 1/Q4.

In (3.9), again we may introduce the virtual photoab-
sorption cross section, now inserting its asymptotic form
from (2.30),

dσγ∗p→γp

dt

∣∣∣∣
t=0

(W 2, Q2)

=
4

16π
σ2
γ∗p(W

2, Q2)(1 + β2
T)

=
9

16π
σ2
γ∗
Tp

(W 2, Q2)(1 + β2
T) (for Q2 
 Λ2(W 2)).

(3.10)

According to (3.10), for asymptotic values of Q2 

Λ2(W 2), the dependence on the kinematical variables of
the forward-scattering amplitude for DVCS, γ∗p → γp,
is determined by the amplitude for γ∗p → γ∗p. The fi-
nal photon being on-shell, Q2 = 0, in (3.10) only leads to
a constant, even though significant, enhancement factor
with respect to what is obtained by applying the optical
theorem to the amplitude for γ∗p → γ∗p.

We may combine the limits (3.6) and (3.9) to conclude

ρT ≡
16π dσγ∗p→γp

dt

∣∣∣
t=0

(W 2, Q2)

σ2
γ∗
Tp

(W 2, Q2)

=

{
1, for Q2 � Λ2(W 2),
9, for Q2 
 Λ2(W 2).

(3.11)

If the transverse photoabsorption cross section in (3.11)
is replaced by the total one, σγ∗(W 2, Q2), the factor 9
is replaced by 4. In Fig. 3, we show a plot of the ratio
(3.11). The plot explicitly displays the enhancement due
to putting the final photon on-shell in the square of the
amplitude for γ∗p → γ∗p15. In Fig. 4, we have indicated
the energy, W = 89 GeV, at which the ratio in (3.11) was
evaluated, even though the ratio is (obviously) indepen-
dent of W in the limits indicated in (3.11).
15 The result (3.11) and Fig. 4 are based on the total cross
section (2.27) to (2.30) that scales in η. Scaling in η is violated
at large η for finite W , since the diffractive mass spectrum has
an upper bound, m2

1 [2]. Taking this effect into account leads to
an enhancement of the ratio (3.11) in Fig. 4. The enhancement
in Fig. 4 starts at Q2 ≈ 50 GeV2 and reaches about 10% at
Q2 ≈ 100 GeV2.
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Fig. 3. The ratio ρT is calculated using the transverse part
of the total photoabsorption cross section, ρT ≡ 16πdσ(γ∗p →
γp)/dt

/
σ2

γ∗
Tp(W 2, Q2), while ρ uses σγ∗p ≡ σγ∗

Tp + σγ∗
Lp, i.e.

ρ ≡ 16πdσ(γ∗p → γp)/dt
/
σ2

γ∗p(W 2, Q2)

The logarithmic behavior (3.5) that sets in for η � 1,
leads to the conclusion that

lim
W→∞
Q2=const

dσγ∗p→γp

dt

∣∣∣
t=0

(W 2, Q2)

dσγp→γp

dt

∣∣∣
t=0

(W 2)
= 1. (3.12)

The cross section for DVCS at any fixed Q2 for sufficiently
high energy, W , approaches the one of real Compton scat-
tering. The result (3.12) is the Compton-scattering ana-
logue of the asymptotic relationship (2.38) for the total
photoabsorption cross section.

We emphasize that “saturation” in the sense of (2.38)
and (3.12) does not depend on a specific “saturation-
model” assumption. Saturation in the sense of (2.38) and

Fig. 4. The W -dependence for DVCS for Q2 = 9.6 GeV2 com-
pared with the prediction from the QCD-based GVD-CDP

(3.12) only rests on the underlying two-gluon-exchange
generic structure16 from Fig. 1 that implies the basic re-
lations (2.21) to (2.23).

The experiments [5] on γ∗p → γp do not extract so far
the forward-production cross section, nor the slope in mo-
mentum transfer. Theoretical considerations on the slope
are beyond the scope of the present work. Assuming an
exponential fall-off with slope b, exp(bt), we obtain from
(3.3)

σγ∗p→γp(W 2, Q2)

=
1

16πb

(
αRe+e−σ(∞)

3π

)2(
ln
Q2 + Λ2(W 2)
Q2 +m2

0

)2

(1 + β2
T).

(3.13)

In the comparison with the experimental data from
HERA, we proceed in two steps. In the first step, we put

βT = 0, b = 4 GeV−2. (3.14)

All other quantities in (3.13), the product Re+e−σ(∞), as
well as Λ2(W 2) and m2

0, were fixed by the analysis of
the total cross section, σγ∗p(W 2, Q2). Compare (2.32) to
(2.34).

When looking at the comparison with the experimen-
tal data in Figs. 4 and 5, the drastic assumption of a
constant slope b in (3.14) has to be kept in mind, and the
data indeed indicate17 that the Q2 dependence requires
a decrease in b with increasing Q2, as expected from the
effective decrease of the dipole size r⊥ with increasing Q2

contained in the photon lightcone wave function (for the
initial photon) in (2.5).

Fig. 5. As Fig. 4, but for the Q2 dependence at fixed W =
89 GeV. The H1 data have been appropriately shifted [5] in
energy from the H1 value of W = 75 GeV to W = 89 GeV

16 If anything in addition, it is the convergence of the integrals
(2.22) and (2.23) over the distribution in the gluon momentum
and its first moment that enters (2.38) and (3.12).
17 This was previously observed by the ZEUS collaboration
and in the theoretical analysis in [26].



M. Kuroda, D. Schildknecht: Virtual photoabsorption cross section, Compton scattering, vector-meson production 213

In order to quantitatively estimate the influence of a
change in slope with Q2, we assume a dependence of b(Q2)
on Q2 extracted from ρ0 electroproduction, even though
the mass spectrum of the intermediate state coupled to
the outgoing real photon extends quite far beyond the ρ0

mass18. The fit to ρ0 electroproduction gave [28] (in units
of GeV−2)

bρ0(Q
2) =

3.46

M2
ρ0

(
1 +

(
Q2/M2

ρ0

)0.74

2.16

) + 4.21. (3.15)

Numerically, according to (3.15), the slope b decreases
from around 10 GeV−2 at Q2 = 0 to about 4.5 GeV−2

at Q2 ∼= 100 GeV2. The effect of this change in slope is
shown by the dotted line in Fig. 5.

In conjunction with the difference in slope between
(3.14) and (3.15), the absolute normalization of the cross
section was adjusted by including a real part of β2

T = 0.1
and by an increase of σ(∞) by about 16%.

Altogether, the validity of the simple formula (3.3),
without any adjusted parameter, is satisfactory and sup-
ports the underlying generic two-gluon-exchange structure
from QCD. As mentioned, the ansatz (2.24) is a technical
one that can be adopted without loss of generality. The
specific form of Λ2(W 2) in (2.32) and (2.33) in the ap-
propriate kinematic domain of η 
 1 corresponds [2] to
a simple assumption on the gluon distribution. An analo-
gous assumption is inherently contained in any approach
to DIS, usually in terms of an arbitrary input for the gluon
distribution.

We end this section with a few comments on other
approaches to DVCS.

Various approaches to DVCS, [29,30] and [31] start
from the color-dipole formulation (2.11) for the total cross
section that does not constrain the restriction in the color-
dipole cross section to (qq̄)J=1p → (qq̄)J=1p transitions.
The observed differences [13] between dipole cross sec-
tions leading to equivalent predictions for γ∗p → γ∗p and
γ∗p → γp are presumably due to J �= 1 contributions.
Both approaches of [29] and [30] use the energy, W , as the
basic variable the dipole-cross section depends on, while
[31] employs a dependence on the two variables x and Q2.

References [29,30] both use a two-component approach
(soft and hard pomeron) in the ansatz for the dipole cross
section to accomodate both the Q2 → 0 and the Q2 → ∞
limits in distinction from our one-component approach
(2.25) that describes the hard and the soft limit by the
transition from 1/η to ln(1/η) according to (2.29) and
(2.30). Our formulation is unique with respect to the sim-
plicity of the final result for DVCS in (3.3) including the
Q2 � Λ2(W 2) andQ2 
 Λ2(W 2) limits in (3.5) and (3.9),
and with respect to the transparent connection with the
total photoabsorption cross section in (3.6) and (3.10).

The approach of the present paper and related work
on DVCS based on the color-dipole picture [29] neglects
18 An estimate of the ρ0 contribution to DVCS gave a contri-
bution of the order of 20% [27] at low Q2, rapidly decreasing
with increasing Q2.

the effect of a non-zero minimal momentum transfer to
the proton, tmin, resulting from the difference in four-
momentum squared of the incoming (Q2 > 0) and outgo-
ing photon (Q2 = 0) in (forward) DVCS. For γ∗p → Xp,
in leading order in (Q2 +M2

X)/W 2,

tmin � − (Q2 +M2
X)2

W 4 M2
p , (3.16)

where Mp denotes the proton mass. For DVCS, where
M2
X = 0, we have |tmin| = x2M2

p , and, accordingly, |tmin|
is of negligible magnitude with respect to all other di-
mensionful variables, since it lies between 10−2 GeV2 at
x = 10−1 and 10−8 GeV2 at x = 10−4. The effect of
P ′ �= P , where P and P ′ refer to the incoming and outgo-
ing nucleon, respectively, has been investigated by general-
izing parton distributions and evolution equations to this
case of P ′ �= P [32,33]. Generalized parton distributions
(GPD’s) can thus be predicted at any Q2, once they have
been specified at an input scale, Q2

0, by an appropriate pa-
rameterization. For DVCS see [34,27,26]. A comparison of
the theoretical prediction thus obtained [26,5] for the Q2

dependence of DVCS with ours in Fig. 5 reveals no drastic
difference. A theoretical analysis of (forward) DVCS that
only relies on those parameters that are fixed by mea-
surements of σγ∗p(W 2, Q2), thus ignoring the change in
four-momentum of the proton, P �= P ′, so far seems ad-
equate for a representation of the available experimental
data on DVCS.

4 Vector-meson electroproduction

Using the results for diffractive production, γ∗p →
(qq̄)J=1p, of the (qq̄)J=1 continuum collected in (2.35) to
(2.37) in Sect. 2, and applying quark–hadron duality, it is
now a simple matter to arrive at a parameter-free predic-
tion for vector-meson forward production.

Quark–hadron duality [7] says that the asymptotic
cross section for e+e− annihilation into a quark–antiquark
pair, e+e− → qq̄, interpolates the production of the low-
lying vector mesons of the corresponding quark flavor.
That is, the integrals over the low-lying vector-meson
peaks in e+e− annihilation, when averaged over an in-
terval ∆M2

V determined by the vector-meson level spac-
ing, become identical to the low-energy continuation of the
asymptotic cross sections for e+e− → qq̄ with appropriate
flavor of the quark q.

For the case of diffractive production, quark–hadron
duality allows us to determine the cross section for vector-
meson production by integration of the cross sections
(2.35) to (2.37) for the diffractively produced (qq̄)J=1 con-
tinuum19,

19 Compare also [9] for the application of quark–hadron du-
ality to vector-meson production. Also, we note that a refined
treatment should simultaneously analyze quark–hadron dual-
ity in e+e− annihilation and diffractive production.
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dσγ∗p→(qq̄)J=1
M(V )p

dt

∣∣∣∣∣
t=0

(W 2, Q2)

=
∫

dz
∫
∆M2

V

dM2 dσγ∗p→(qq̄)J=1p

dtdM2dz

∣∣∣∣
t=0

(W 2, Q2,M2).

(4.1)

In (4.1), γ∗p → (qq̄)J=1
M(V )p, may refer to the sum of trans-

verse and longitudinal cross sections, as well as to trans-
verse and longitudinal cross sections separately, whereby
γ∗ has to be replaced by γ∗

T and γ∗
L, respectively20. The

mass of the vector meson V is denoted by M(V ) ≡ MV ,
and the quark flavor of the cross section on the right-hand
side in (4.1) has to be identical to the quark content of the
vector meson, i.e. when substituting (2.35) to (2.37) into
(4.1), Re+e− is to be replaced by

Re+e− = 3
∑
q

Q2
q →



R(ρ0) = 9

10R
(ρ0+ω) = 3

2 ,

R(ω) = 1
10R

(ρ0+ω) = 1
6 ,

R(φ) = R(Υ ) = 1
3 ,

R(J/ψ)= 4
3 .

(4.2)

When predicting vector-meson production according
to (4.1), we have to discriminate between the low-lying
vector mesons, ρ, ω, φ, that may be described by the limit
of vanishing quark mass, mu = md = ms = 0, and
the vector mesons, J/ψ and Υ , where the approximations
M2
J/ψ ≈ 4m2

c and M2
Υ ≈ 4m2

b are appropriate. In Sect. 4.1
we treat the light vector mesons by inserting (2.35) to
(2.37) into (4.1). For the treatment of the heavy vector
mesons in Sect. 4.2, we shall generalize (2.35) to (2.37) to
the case of massive quarks. A comparison with the exper-
imental data will be given in Sect. 4.3.

4.1 Massless quarks, ρ0, ω, φ production

Before giving the explicit result obtained by integration of
(4.1), it will be illuminating to consider the approximation
of (4.1)

dσγ∗p→(qq̄)J=1
M(V )p

dt

∣∣∣∣∣
t=0

(W 2, Q2)

� ∆M2
V

∫
dz

dσγ∗p→(qq̄)J=1p

dtdM2dz

∣∣∣∣
t=0

(W 2, Q2,M2 = M2
V ),

(4.3)

and determine its behavior for Q2 → ∞ and Q2 → 0
upon inserting the cross sections from (2.35) to (2.37) at
M2 = M2

V .
The cross sections (2.35) to (2.37), with respect to Q2,

dominantly depend on the variable Q2 +M2. We first of
all consider the limit of

Q2 +M2
V 
 Λ2(W 2). (4.4)

20 We restrict ourselves to evaluating γ∗
Tp → (qq̄)J=1

T p and
γ∗
Lp → (qq̄)J=1

L p, i.e. by disregarding transitions such as γ∗
Tp →

(qq̄)J=1
L p, we assume helicity conservation.

For definiteness, we note that according to (2.32)

2 GeV2 ∼< Λ2(W 2) ∼< 7 GeV2 (4.5)

for the energy range covered by HERA of 30 GeV ∼< W ∼<
300 GeV. From the leading term in the expansion of (2.37)
in powers of Λ2(W 2)/(Q2 +M2

V ), upon insertion in (4.3)
we find

dσγ∗p→(qq̄)J=1
M(V )p

dt

∣∣∣∣∣
t=0

(W 2, Q2,M2
V )

=
1

16π
αR(V )

3π
(σ(∞)(W 2))2

Λ4(W 2)∆M2
V

(Q2 +M2
V )3

Q2

Q2 +M2
V

. (4.6)

The transverse-production cross section, from the expan-
sion of (2.35), is given by

dσγ∗
Tp→(qq̄)J=1

M(V )Tp

dt

∣∣∣∣∣
t=0

(W 2, Q2,M2
V )

=
1

16π
αR(V )

3π
(σ(∞)(W 2))2

·4Λ
4(W 2)M2

V∆M
2
V

(Q2 +M2
V )4

(
Q2

Q2 +M2
V

)2

. (4.7)

The results (4.6) and (4.7), according to (4.4), are not
only valid for the production of light vector mesons, but
their range of validity also includes the case of the contin-
uum of heavy qq̄ states formed from light quarks with

M2
V ≡ M2

qq̄ 
 Λ2(W 2), (4.8)

where (4.4) is valid even for Q2 ≥ 0.
We turn to ρ0(ω, φ) production, where (4.4) with (4.5)

requires
Q2 
 Λ2(W 2) (4.9)

since Λ2(W 2) > M2
ρ0(ω,φ). The unpolarized cross section

(4.6) in this case may be more appropriately written as

dσγ∗p→(qq̄)J=1
M(V )p

dt

∣∣∣∣∣
t=0

(W 2, Q2,M2
V )

=
1

16π
αR(V )

3π
(σ(∞)(W 2))2

Λ4(W 2)∆M2
V

(Q2 +M2
V )3(

V = (ρ0, ω, φ); Q2 
 Λ2(W 2) > M2
ρ0,ω,φ

)
. (4.10)

Since the transverse cross section (4.7) is suppressed
by a power of Q2 +M2

V , the longitudinal cross section in
its leading term coincides with (4.6) and the longitudinal-
to-transverse ratio in the asymptotic limit (4.4) is given
by

RL/T =
Q2

4M2
V

(Q2 
 Λ2(W 2) > M2
V ). (4.11)

For the opposite limit of

Q2 +M2
V � Λ2(W 2), (4.12)



M. Kuroda, D. Schildknecht: Virtual photoabsorption cross section, Compton scattering, vector-meson production 215

by expansion of (2.37), and integration from M2
1 to M2

1 +
∆M2

V , we find

dσγ∗p→(qq̄)J=1p

dt

∣∣∣∣
t=0

(W 2, Q2,M2
V )

=
1

16π
αR(V )

3π
(σ(∞)(W 2))2 ln

(
1 +

∆M2
V

Q2 +M2
1

)
. (4.13)

A final remark concerns the energy dependence of the
whole diffractively produced (qq̄)J=1 continuum in the
limit (4.12), relevant for photoproduction of light quarks,
q = u, d, s at HERA energies. With (3.1), we find,∫

m2
0

dM2
dσγ∗p→(qq̄)J=1

T p

dtdM2

∣∣∣∣
t=0

(W 2, Q2 = 0,M2)

=
1

16π
αRe+e−

3π

(
σ(∞)(W 2)

)2
∫ Λ2(W 2)

m2
0

dM2

M2

=
1

16π
αRe+e−

3π

(
σ(∞)(W 2)

)2
ln
Λ2(W 2)
m2

0
. (4.14)

While the energy dependence in photoproduction of a dis-
crete vector-meson state (4.13) is even weaker than the
energy dependence of the total photoproduction cross sec-
tion, the energy dependence of the whole (qq̄)J=1 contin-
uum, with the approximate constancy of σ(∞)(W 2), shows
the logarithmic dependence of σγp(W 2) from (2.29).

We finally give the expressions for the vector-meson-
production cross section obtained by evaluating the
quark–hadron-duality relation (4.1) without further ap-
proximation. Upon insertion of (2.35) to (2.37), and inte-
gration over dz and dM2, we find

dσγ∗p→(qq̄)J=1
M(V )p

dt

∣∣∣∣∣
t=0

(W 2, Q2)

=
1

16π
αR(V )

3π
(
σ(∞))2 [Π(Λ2(W 2), Q2,M2)

]M2
2

M2
1
, (4.15)

where the function Π(Λ2(W 2), Q2,M2) is to be evaluated
at the limits of M2

1 and M2
2 , where

∆M2
V = M2

2 −M2
1 ,

M2
1 < M2

V < M2
2 . (4.16)

For the case of the sum of transverse- and longitudinal-
production cross sections, we have

Π(Λ2(W 2), Q2,M2)

= +
1
2

ln
(Λ2 +Q2)(

√
X +Q2 + Λ2) +M2(Q2 − Λ2)√
X +M2 +Q2 − Λ2

− Λ2√
Λ2(4Q2 + Λ2)

· ln
√
Λ2(4Q2 + Λ2)

√
X + Λ2(3Q2 −M2 + Λ2)
M2 +Q2 , (4.17)

while for the longitudinal and the transverse case, sepa-
rately,

ΠL(Λ2(W 2), Q2,M2)

= − 1
M2 +Q2 +

1

2
√
Q2Λ2

arctan
M2 +Q2 − Λ2

2
√
Q2Λ2

+
2√

Λ2(4Q2 + Λ2)

· ln
√
Λ2(4Q2 + Λ2)

√
X + Λ2(3Q2 −M2 + Λ2)
M2 +Q2 , (4.18)

where Λ2 stands for Λ2(W 2) and X is given by

X ≡ (Q2 +M2 − Λ2)2 + 4Q2Λ2, (4.19)

and

ΠT(Λ2(W 2), Q2,M2)

=
Q2

M2 +Q2 − 1
2

√
Q2

Λ2 arctan
M2 +Q2 − Λ2

2
√
Q2Λ2

+
1
2

ln
(Λ2 +Q2)(

√
X +Q2 + Λ2) +M2(Q2 − Λ2)√
X +M2 +Q2 − Λ2

− 2Q2 + Λ2√
Λ2(4Q2 + Λ2)

· ln
√
Λ2(4Q2 + Λ2)

√
X + Λ2(3Q2 −M2 + Λ2)
M2 +Q2 . (4.20)

Upon adopting an exponential t-dependence,
exp(bV t), the cross section for vector-meson produc-
tion, σγ∗p→(qq̄)J=1

M(V )p(W
2,Q2), is obtained from (4.3) and

(4.15) by multiplication by 1/bV .
For the case of the ρ0 meson we have compared the re-

sults of the integration of (4.1) given by (4.15) with the ap-
proximate results for large Q2 in (4.10) and for small Q2 in
(4.13). With M2

ρ0 = 0.59 GeV2 and ∆M2
ρ2 = 1 GeV2 and

the lower bound M2
1 = 0.36 GeV2 in (4.15), we find that

the large-Q2 approximation for Q2 ≥ 90 GeV2 in (4.10)
overestimates the exact evaluation of (4.1) by less than
10%. With decreasing Q2 the large-Q2 approximation sub-
stantially overestimates the exact evaluation, since (4.4)
becomes violated and in addition the approximation of
Q2 + M2 by a constant, Q2 + M2

V , becomes less justi-
fied. For Q2 → 0, the approximation (4.13) exceeds the
exact evaluation by a few percent. Altogether, for semi-
quantitative discussions, the approximations (4.10) and
(4.13) are very useful, while for detailed comparison with
the experimental data the results based on (4.15) should
be employed.

4.2 Massive quarks, J/ψ and Υ production

The light-cone wave functions (2.8) and (2.9) include a
non-zero rest mass, mq, of the quark. There are essentially
two important effects, when passing from the approxima-
tion of massless quarks, relevant for ρ0, w, φ production,
where M2

V 
 4m2
q

∼= 0, to massive quarks, relevant for
J/ψ and Υ production, where M2

V
∼= 4m2

q �= 0.
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First of all, the transition from massless to massive
quarks affects the lightcone variable z. In the massless-
quark case, we have

0 ≤ z ≤ 1, (4.21)

and z is related to the angle of the qq̄ axis relative to the
photon-direction in the qq̄ rest frame via

sin θ = 2
√
z(1 − z),

cos θ = 1 − 2z. (4.22)

In the case of massive quarks, (2.18), the range of z for
given quark mass and given mass Mqq̄ is determined by

M2 ≡ M2
qq̄ =

m2
q

z(1 − z)
. (4.23)

One finds

z− ≤ z ≤ z+,

z± =
1
2

± 1
2

√
1 − 4

m2
q

M2
qq̄

, (4.24)

and an integration over dz is restricted to the interval

∆z = z+ − z− =

√
1 − 4

m2
q

M2
qq̄

=

{
1, for m2

q = 0,
0, for m2

q = 1
4M

2
qq̄.

(4.25)
Upon introducing the variable y defined by

z = (z+ − z−)y + z− =

{
z+, for y = 1,
z−, for y = 0,

(4.26)

the integration over dz in the massive-quark case is rep-
resented by

∫ z+

z−
dz =

√
1 − 4m2

q

M2
qq̄

∫ 1

0
dy. (4.27)

For later reference, we note the integral over the threshold
factor in (4.27),

∆F 2(m2
q, ∆M

2
V )

≡
∫ 4m2

q+∆M
2
V

4m2
q

dM2

√
1 − 4m2

q

M2

∫ 1

0
dy

= (4m2
q +∆M2

V )

√
∆M2

V

4m2
q +∆M2

V

+2m2
q ln

1 −
√

∆M2
V

4m2
q+∆M

2
V

1 +
√

∆M2
V

4m2
q+∆M

2
V

. (4.28)

In passing, we mention that the qq̄ rest-frame angle in
the massive case is related to y by

sin θ = 2
√
y(1 − y),

cos θ = 1 − 2y. (4.29)

Moreover, in terms of y,

z(1 − z) =
m2
q

M2 +

(
1 − 4m2

q

M2

)
y(1 − y),

z2 + (1 − z)2 =
2m2

q

M2 +

(
1 − 4m2

q

M2

)
(y2 + (1 − y)2),

(4.30)

such that y is indeed the appropriate generalization of the
variable z to the massive-quark case.

The second important modification with respect to
the massless-quark case concerns the diffractive produc-
tion cross sections (2.35) to (2.37) when passing from
M2
V 
 4m2

q
∼= 0 to M2

V
∼= 4m2

q �= 0. For qq̄ production
near threshold this modification may be accomplished by
a simple substitution to be applied in the sum of the trans-
verse and the longitudinal cross section for the massless-
quark case given in (2.35) and (2.36).

To derive the substitution prescription, we consider
the sum of the transverse and the longitudinal lightcone
wave function given in (2.8) and (2.9), respectively, and
compare the massive case, m2

q �= 0, with the massless one,
m2
q = 0. We find that at production threshold, where

M2
qq̄ = 4m2

q, z(1 − z) =
1
4
, (4.31)

the sum of the transverse and longitudinal wave functions
of the massive case is recovered from the massless one by
carrying out the substitution

Q2 → Q2 + 4m2
q, (4.32)

in the expression for the massless case. For a vector meson
at or closely above threshold, the quark mass according
to (4.32) acts as an additive contribution to Q2 of magni-
tude 4m2

q
∼= M2

V . When applying the substitution (4.32)
to the sum of the diffractive-production differential cross
sections for the massless-quark case in (2.35) and (2.36)
at z(1−z) = 1

4 , the mass M2 ≡ k 2
⊥ /z(1−z) in (2.35) and

(2.36) must be put to zero, in order to correctly realize
the threshold relation (4.31). Finally upon substitution,
the threshold mass, 4m2

q, is to be replaced by the vector-
meson mass, i.e.

(4m2
c , 4m

2
b) → (M2

J/ψ,M
2
Υ ). (4.33)

In order to obtain an approximate expression for the
production cross section in the case of M2

V
∼= 4m2

q when
applying quark–hadron duality according to (4.1), we will
use (4.27) and (4.28), while approximating the (qq̄)J=1

production cross sections (2.35) and (2.36) upon substitu-
tion of (4.32) by their values at threshold, 4m2

q, whereby
we identify threshold and vector-meson mass, 4m2

q = M2
V .
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Upon having carried out the preceeding steps in the
sum of the cross sections (2.35) and (2.36), and upon sub-
stituting (4.28), we find that (4.1) is approximated by

dσγ∗p→V p

dt

∣∣∣∣
t=0

=
dσγ∗

Tp→VTp

dt

∣∣∣∣
t=0

+
dσγ∗

Lp→VLp

dt

∣∣∣∣
t=0

=
3
2

· αR
(V )

3 · 16π2 (σ(∞))2

·
∫ 4m2

q+∆M
2
V

4m2
q

dM2

√
1 − 4m2

q

M2 (Q2 +M2
V )

·
(

1
Q2 +M2

V

− 1
Q2 +M2

V + Λ2(W 2)

)2

, (4.34)

where V = J/ψ, Y . The integration over dM2 in (4.34)
runs from the threshold, 4m2

q, to the upper limit 4m2
q +

∆M2
V , where ∆M2

V is determined by the vector-meson
level spacing and 4m2

q ≤ M2
V ≤ 4m2

q +M2
V .

The integrand in (4.34) is easily verified to be identical
to what one obtains by applying the substitution (4.32)
only to the longitudinal-production cross section (2.36).
In fact, one finds that the transverse cross section (2.35)
vanishes upon applying the substitution procedure based
on (4.32).

Identifying the longitudinal cross section in (4.34) via
its Q2 dependence, (4.34) may be rewritten as

dσγ∗
Tp→VTp

dt

∣∣∣∣
t=0

+
dσγ∗

Lp→VLp

dt

∣∣∣∣
t=0

=
dσγ∗

Lp→VLp

dt

∣∣∣∣
t=0

(
1 +

M2
V

Q2

)
, (4.35)

i.e. the longitudinal-to-transverse ratio fulfills

RL/T =
Q2

M2
V

(for Q2 ≥ 0). (4.36)

This ratio differs from the one in the massless-quark case
(4.11) by the missing factor 1/4 and by the range of va-
lidity in Q2.

The final expression for the production cross section
(4.34) becomes

dσγ∗p→V p

dt

∣∣∣∣
t=0

=
3
2

· αR
(V )

3 · 16π2 (σ(∞))2
Λ4(W 2)

(Q2 +M2
V )3

1(
1 + Λ2(W 2)

Q2+M2
V

)2

·∆F 2(m2
q, ∆M

2
V ) (V = J/ψ, Υ ), (4.37)

where ∆F 2(m2
q, ∆M

2
V ) is given by (4.28). Note that this

expression for the cross section is independent of an as-
sumption on the relative magnitude of Q2 + M2

V and
Λ2(W 2), in distinction from the massless-quark case,
where (4.13) as well as (4.6) and (4.10) are relevant, re-
spectively, for Q2 + M2

V � Λ2(W 2) and Q2 + M2
V 


Λ2(W 2). The additional factor 3/2 in the massive-quark

case relative to the massless one is a genuine conse-
quence of the fact that 4m2

q
∼= M2

V for the heavy vec-
tor mesons. While according to (4.31), for massive quarks
z(1 − z) = 1/4, for massless quarks the integration over
z(1 − z) yield 1/6. In addition to the factor 3/2 and the
factor RV , for Q2 + M2

V 
 Λ2(W 2), the massless and
the massive case differ by the replacement of ∆M2

V by
∆F 2(m2

q, ∆M
2
V ).

We point out a few outstanding features of the (ap-
proximate) result (4.37) and its massless-quark counter-
parts (4.10) and (4.13). Rather than referring to the
massless-quark and the massive-quark case, we will refer
to the ρ0 case and the J/ψ case, where ρ0 stands for ρ0,
ω, φ and J/ψ stands for J/ψ and Υ . From (4.37), as well
as (4.10) and (4.13), we conclude to the following.

(i) The cross sections for ρ0 as well as J/ψ produc-
tion are functions of Q2 + M2

V , rather than Q2 it-
self. When plotted against Q2 + M2

V , one will find
approximately the same functional behavior for the
ρ0 and the J/ψ, except for normalization differences
due to R(V ) (compare (4.2)), the above-mentioned
factor 3/2, and the effective value of ∆M2

V . In the
ρ0 case, ∆M2

V corresponds to the level spacing, while
for the J/ψ the analogous quantity is determined by
the integral over the threshold factor (4.28).

(ii) As soon as

Q2 +M2
V 
 Λ2(W 2) (4.38)

the energy dependence is “hard”, as Λ4(W 2). This
condition for the J/ψ is fulfilled already for Q2 not
far from Q2 ≥ 0 at HERA energies, while Q2 

Λ2(W 2) is required for the ρ0. Note that far beyond
HERA energies, the increase of Λ2(W 2) with energy
will result in a soft energy dependence at Q2 ∼= 0
for the J/ψ since (4.38) will be violated, and the
J/ψ according to (4.37) will behave as the ρ0 in
photoproduction at presently available energies. To
stress the point again: it is relation (4.38) that de-
cides on the energy dependence. A ρ0-like continuum
state of sufficiently high mass (consisting of approx-
imately massless u and d quarks) according to (4.6)
shows a “hard” energy behavior even in the limit of
Q2 < Λ2(W 2). On the other hand, a hypothetical
quark of mass mq

∼= 1 GeV forming a bound state
of about 2 GeV would violate (4.38) for Q2 → 0 and
sufficiently high energy, and accordingly the energy
dependence would be soft.

So far we have considered the approximate evaluation
of the quark–hadron-duality relation (4.1). For the direct
evaluation of (4.1) in the massive-quark case, we need
the generalization of (4.35) to (4.37) to massive quarks
even beyond the threshold (4.31). Employing the light-
cone wave functions (2.8) and (2.9) for a non-vanishing
quark mass we have gone through the steps that lead to
(2.35) to (2.37) in the massless case. Upon substituting
the result into (4.1), and upon integration over dM2 from
m2
q/z(1 − z) to 4m2

q +∆M2
V , one obtains
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Table 1. We show the input parameters used in the calculations of ρ0, J/ψ and
Υ production, as well as the enhancement of J/ψ and Υ production relative
to ρ0 production in the approximate evaluation and in the exact numerical
evaluation of quark–hadron duality. The enhancements of J/Ψ and Υ refer to
identical values of Q2 +M2

V = 89.48 GeV2

V R(ρ0)/R(V ) MV (GeV) ∆M2
V (GeV2) mq (GeV) E

(V )
appr. E(V )

ρ0 1 0.77 1.0 0 — —
J/ψ 9

8 3.096 4.0 1.5 2.01 2.25
Υ 9

2 9.460 11.0 4.6 3.32 2.69

dσγ∗p→(J/ψ,Υ )p

dt

∣∣∣∣
t=0

=
αR(J/ψ,Υ )

32π2 (σ(∞))2
∫ 1

2 (1+∆z)

1
2 (1−∆z)

dz

· [(z2 + (1 − z)2
)

·ΠT

(
Λ2(W 2), Q2 +

m2
q

z(1 − z)
,M2 − m2

q

z(1 − z)

)

+

(
4Q2z(1 − z) +

m2
q

z(1 − z)

)

·ΠL

(
Λ2(W 2), Q2 +

m2
q

z(1 − z)
,

M2 − m2
q

z(1 − z)

)]4m2
(c,b)+∆M

2
(J/ψ,Υ )

m2
(c,b)

z(1−z)

.(4.39)

Here the functionsΠT andΠL are identical to the ones en-
countered earlier in the massless cases, (4.20) and (4.18),
respectively. The arguments in (4.34), however, differ from
the ones in (4.20) and (4.18) by the substitution21

Q2 → Q2 +
m2
q

z(1 − z)
,

M2 → M2 − m2
q

z(1 − z)
. (4.40)

The interval ∆z in (4.39) is related to the one that is given
in (4.25) by the replacement of M2

qq̄ by 4m2
q +∆M2

V , i.e.

∆z =

√√√√ ∆M2
(J/ψ,Υ )

4m2
(c,b) +∆M2

(J/ψ,Υ )
(4.41)

For the sake of clarity, we mention that (4.39) is to be
understood under the constraint

4m2
(c,b) ≤ M2

(J/ψ,Υ ) ≤ 4m2
(c,b) +∆M2

(J/ψ,Υ ), (4.42)

21 Note that the substitution (4.40) at the threshold (4.31) co-
incides with the substitution (4.32). At threshold, the massive-
quark cross section is obtained from the massless one by ap-
plying the substitution (4.40). This is not true in general, as
the factor in front of

∏
L in general is not obtained by the

substitution (4.40).

where M(J/ψ,Υ ) denotes the experimental value of the
vector-meson mass, and ∆M2

(J/ψ,Υ ) the level spacing,
while the mass of charm or bottom quark, m(c,b), is not
uniquely fixed.

We have compared the numerical result from (4.39)
with the approximate one in (4.37). For J/ψ production,
for Q2 +M2

J/ψ ≥ 25 GeV2, the approximation (4.37) over-
estimates the result from (4.39) by less than 10%. For the
case of Υ production, for Q2 ∼= 0, for later reference we
note that the approximation result is about 40% larger
than the result of the exact evaluation.

In order to compare the cross sections for J/ψ and Υ
production with the cross sections for ρ0 production, it is
useful to remove the effect due to differences in the quark
content and to define an “enhancement factor” E(V ) by

E(V ) ≡ R(ρ0)

R(V )

σγ∗p→V p

σγ∗p→ρ0p
, V = J/ψ, Υ, (4.43)

where the cross sections are to be evaluated at identical
fixed values of Q2 + M2

V for the different vector mesons
and at the same energy W . For Q2+M2

V sufficiently large,
the slope parameters of the t-distribution, b(Q2+M2

V ), are
experimentally known to become identical, b(Q2 +M2

V ∼>
30 GeV2) ∼= 4.5 GeV−2, and (4.43) may be evaluated by
inserting forward-production cross sections. Inserting the
approximations (4.37) and (4.10), we have

E(V )
appr. =

3
2
∆F 2(m2

q, ∆M
2
V )

∆M2
ρ0

· 1(
1 + Λ2(W 2)

Q2+M2
V

)2 ,

V = J/ψ, Υ. (4.44)

The dependence on Q2 + M2
V leads to some increase of

E(J/ψ) with Q2 + M2
V that is confirmed by the more

reliable evaluation of (4.43) based on (4.39) and (4.15).
The enhancement (4.43) and (4.44) is recognized as a
genuine massive-quark effect with respect to the factor
3/2 following from 4m2

q
∼= M2

V , and the threshold factor
∆F 2(m2

q, ∆M
2
V ) that replaces ∆M2

V in the massive-quark
case.

We have numerically evaluated (4.43), assuming a uni-
versal slope parameter b for ρ0, J/ψ and Υ . Inserting (4.39)
and (4.15), we find the enhancement factor of Table 1 at
W = 90 GeV and Q2 +M2

V = 89.48 GeV2 that is relevant
for Υ photoproduction. In Table 1, we also present the
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results obtained from the approximation (4.44). The de-
viation from the results from (4.43) for the J/ψ is due to
the mentioned excess of about 10% of the approximation
(4.10) for the ρ0 meson with respect to the exact result.
The larger deviation in the case of the Υ is largely due to
the above mentioned 40% deviation of (4.37) for the Υ .

4.3 Comparison with experiment

In this section we compare the Q2 dependence, the W de-
pendence and the absolute normalization of the vector-
meson-production cross sections with the experimental
data.

From (4.10) and (4.37) the Q2 dependence of vector-
meson production at Q2 +M2

V 
 Λ2(W 2) is determined
by (Q2 + M2

V )−n where n = 3. A fit to the experi-
mental data [35] for ρ0 production including data from
Q2 ∼= 10 GeV2 toQ2 ∼= 50 GeV2 leads to nρ0 = 2.60±0.04.
For J/ψ production, a fit in the interval 12 GeV2 ≤
Q2 + M2

J/ψ ≤ 60 GeV2 by the ZEUS collaboration gave
nJ/ψ = 2.72 ± 0.10 [36]. Both nρ0 and nJ/ψ are consistent
with the prediction of n = 3, taking into account the fairly
low value of the lower end of the interval in Q2 +M2

V used
in the fits. It only exceeds Λ2(W ∼= 70 GeV) ∼= 3.5 GeV2

by a factor of 3.
Both the H1 and the ZEUS collaborations have fitted

the energy dependence of their data by a simple power
law,

σγ∗p→V p(W 2, Q2) ∼ W δ(V )(Q2). (4.45)

We have compared our theoretical energy dependence to
the power law (4.45) by adapting our energy dependence
to this power-law form in a restricted energy range (chosen
as in the experiments) via

δ(V )(Q2 +M2
V ) =

1
ln W2

W1

ln
σγ∗p→V p(W2, Q

2 +M2
V )

σγ∗p→V p(W1, Q2 +M2
V )
.

(4.46)
The consistency of our prediction with the experimental
data [6,37] for ρ0 and J/ψ production is shown in Fig. 6.

We turn to the absolute normalization of the vector-
meson-production cross section. According to (4.10) and
(4.13) as well as (4.37) the normalization is first of all de-
termined by the product of R(V ) · (σ(∞))2, where R(V ) ac-
cording to (4.2) contains the charges of the relevant quark
flavors, and σ(∞) denotes the asymptotic value of the (uni-
versal) color-dipole cross section (2.21). In Table 1, accord-
ing to (4.2), we show the frequently used ratio R(ρ0)/R(V )

that normalizes the cross sections to the ρ0 case as far as
the quark content of the vector mesons is concerned. For
the universal dipole cross section, σ(∞), we use

σ(∞) = 68 GeV−2 = 27.5 mb. (4.47)

This value is consistent with the value from the analysis
of σγ∗p(W 2, Q2), compare (2.34). In addition to R(V ) and
σ(∞), the normalization of the cross sections in (4.10),
(4.13) and (4.37) is determined by the integration interval

Fig. 6. The exponent δ(V ) in a parameterization of the energy
dependence of the experimental cross section byW δ(V )(Q2+M2

V )

compared with the predictions from the QCD-based GVD-
CDP

∆M2
V entering via quark–hadron duality as well as the

mass of the respective quark. The interval ∆M2
V follows

from the vector-meson level spacing, and for the ρ0, in the
approximate treatment (4.10) and (4.13),∆M2

ρ0 = 1 GeV2

directly multiplies the diffractive-production cross section
at M2 ≡ M2

ρ0 . In the massive quark case, the integrated
threshold factor ∆F 2(m2

q, ∆M
2
V ) from (4.28), effectively

replaces ∆M2
V . In Table 1, we have collected all relevant

quantities, including the quark masses.
Finally, the experimental cross sections include an inte-

gration over the (exponential) t dependence, exp(bt), that
implies a factor of 1/b. We note that [35,28]

bρ0(Q2 +M2
ρ

∼= M2
J/ψ) ∼= 5.5 GeV−2,

bJ/ψ(Q2 +M2
J/ψ

∼= M2
J/ψ) ∼= 4.5 GeV−2, (4.48)

while for lower values of Q2 +M2
V , bρ0 increases to

bρ0(Q2 +M2
ρ0

∼= 1 GeV2) ∼= 7.5 GeV−2. (4.49)

With these preparations, it is a simple matter to dis-
cuss the relative normalization of ρ0, J/ψ and Υ produc-
tion. For the ratio of J/Ψ photoproduction (Q2 = 0) to ρ0

production at Q2 +M2
ρ0 = M2

J/Ψ , from (4.15), (4.39) and
(4.48), we find

9
8
σ(J/ψ)/σ(ρ0) = 1.42, (4.50)

while for Υ photoproduction, from Table 1

E(Υ ) =
9
2
σ(Υ )/σ(ρ0) = 2.69. (4.51)

The factors (4.50) and (4.51) are consistent with the en-
hancements found experimentally for J/ψ [38] as well as Υ
production [39]. Note that a replacement of the integrated
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Fig. 7. The Q2 dependence of ρ0 production, γ∗p → ρ0p,
at fixed W = 75 GeV, compared with the predictions from
the QCD-based GVD-CDP for bρ0 = 7.5 GeV−2 and a Q2-
dependent slope, bρ0(Q2) from (3.15)

threshold factor (4.28) by the level spacings would have
led to drastically increased enhancements.

In Figs. 7 to 10, we show a comparison of our predic-
tions with the experimental Q2 and W dependence of ρ0

and J/ψ production. The theoretical results shown in the
figures are based on the use of (4.1) without further ap-
proximation, i.e. they are based on (4.15) for the ρ0 and
on (4.39) for the J/ψ. For ρ0 production, for Fig. 7 we
inserted a constant slope parameter

bρ0 = 7.5 GeV−2, (4.52)

as well as the Q2-dependent slope [28] from (3.15). In
Fig. 8, we show the W dependence of ρ0 production at
various values of Q2 compared with data from ZEUS and
H1 measurements [6]. In Fig. 9, we show the longitudinal-
to-transverse ratio for ρ0 production. According to Figs. 7
to 9, we have satisfactory agreement for the Q2 and
W dependence, including normalization, as well as the
longitudinal-to-transverse ratio. In Fig. 10 we show the

comparison with photoproduction of J/ψ mesons. The
agreement in the W dependence is very satisfactory in-
deed.

We conclude that our two-gluon-exchange QCD-
based color-dipole approach (called GVD-CDP) yields a
parameter-free representation (except for using the exper-
imental value of the slope parameter b) of vector-meson
production. The dependence on the variable Q2 + M2

V
is a strict consequence of including the quark mass of
magnitude 4m2

q
∼= M2

V into the lightcone wave function
of the photon. The effective value of the gluon trans-
verse momentum, Λ2(W 2), sets the scale for the large,
Q2 + M2

V 
 Λ2(W 2), and small, Q2 + M2
V � Λ2(W 2),

regimes with associated strong and weak W dependences.
The relative normalizations of the cross sections are a
genuine consequence of the quark masses relative to the
vector-meson masses; for the ρ0 the approximation of
massless quarks is relevant, while for the J/ψ and Υ we
have M2

J/ψ
∼= 4m2

c and M2
Υ

∼= 4m2
b , respectively.

4.4 A brief reference to the literature
on vector-meson photo- and electroproduction

The first theoretical papers on electroproduction of vector
mesons [16,40] some thirty-four years ago were based on
(simple diagonal) vector-meson dominance with s-channel
helicity conservation. From the coupling of the vector me-
son to a conserved source as required by electromagnetic
current conservation, it was concluded that production by
longitudinal photons should dominate the cross section via
RL/T ∼ Q2/M2

V – a prediction that has stood the test of
time and also appears in our present paper. The unpolar-
ized cross section, however, was predicted [16,40] to only
decrease as 1/Q2 in strong disagreement with present-day
experimental results that require an asymptotic behavior
approximately as 1/Q6. A revival [41] of off-diagonal GVD
[42] implied a 1/Q4 dependence for the unpolarized cross
section that in fact was found [41] to be consistent with the
experimental data up to around Q2 ≤ 20 GeV2 available
at the time, including the ratio of RL/T. Since the tradi-
tional vector dominance approach relies on (soft) pomeron

Fig. 8. The W dependence of
ρ0 production for various val-
ues of Q2 compared with the
QCD-based GVD-CDP
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Fig. 9. The longitudinal-to-transverse ratio, RL/T for γ∗p →
ρ0p as a function of Q2

exchange, it is unable to describe the strong W depen-
dence observed for sufficiently large values of Q2 +M2

V .
The modern QCD theory of vector-meson produc-

tion uses the notion of the pomeron as a two-gluon-
exchange object [3] throughout. Various approaches dif-
fer in their application of methods from pQCD [43,
44], pQCD combined with quark–hadron duality [9],
the use of non-perturbative QCD approaches [45–47]
and combinations of both [27,48]. The pQCD approach,
valid at sufficiently high Q2 led to an asymptotic
(1/Q6)αs(Q2)xg(x,Q2) behavior of the dominant longitu-
dinal cross section [44], closely related to our asymptotic
behavior as (1/Q6)σ(∞)Λ2(W 2). In its spirit more closely
related to our approach are the investigations in [9] in so
far as they make use of quark–hadron duality, however
in conjunction with conventional parameterizations of the
gluon structure function.

Fig. 10. The W dependence of the J/ψ photoproduction cross
section, compared with the theoretical prediction from the
QCD-based GVD-CDP

A very detailed account of diffractive vector-meson
production based on suitably extrapolating the uninte-
grated gluon density into the low-Q2 domain is given in
[23]. The treatment [23] goes beyond our treatment in so
far as it provides a refined description of the dependence
of the vector-meson wave function for light and heavy vec-
tor mesons rather than relying on quark–hadron duality.
The agreement with experiment of the present work indi-
cates that the Q2 and W dependence is fairly insensitive
to details of the vector-meson wave function.

The approach of the present paper is applicable at all
Q2 ≥ 0 for light and heavy vector mesons. The increase
of the saturation scale with energy, Λ2(W 2), determined
from the DIS measurements of the total photoabsorption
and expressed in terms of three fit parameters is sufficient
to yield a parameter-free and unambiguous description of
(forward) vector-meson production. The final expressions
for the cross sections are simple and transparent, and they
put the (approximate) universal dependence on Q2 +M2

V ,
as well as the W dependence and the relative normaliza-
tion of the cross sections for the production of different
vector mesons on a firm footing.

5 Conclusion

After many years of experimental and theoretical efforts,
it seems that a coherent picture of DIS in the low x
diffraction region, DVCS, and vector-meson production
has emerged. The Q2 dependence and the relative normal-
ization of the cross sections is well understood from our
QCD-based approach of the GVD-CDP. Also the scale for
the remarkable transition from a soft to a hard energy
dependence in DIS, DVCS and vector-meson production,
the saturation scale Λ2(W 2), as well as the very occur-
rence of this transition, is understood, even though an ab
initio prediction of the power of W responsible for the in-
crease with energy, W , is beyond the scope of the present
investigation.
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